the **[text missing or illegible when filed]** encompasses methods and compositions for inhibiting or **[text missing or illegible when filed]** f the polypeptides of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0010] [text missing or illegible when filed] on concerning certain polypnucleotides and polypeptides [text missing or illegible when filed vides the gene number in the application for each clone [text missing or illeg**ible when filed**] a unique clone identifier, "Clone ID:" a cDNA clone [text missing or illegible when filed] in Table 1A. Third column, the cDNA Clones identified [text missing or illegible when filed] indicated in the third column (i.e. by ATCC Deposit No:Z [text missing or illegible when filed]ts contain multiple different clones corresponding to the **[text missing or illegible when filed]** Vector" refers to the type of vector contained in the [text missing or illegible when filed] a the second column. In the fifth column, the nucleotide [text missing or illegible when filed]NO:X" was assembled from partially homologous [text missing or illegible when filed] a the corresponding cDNA clone identified in the second [text missing or illegible when filed]ional related cDNA clones. The overlapping sequences [text missing or illegible when filed us sequence of high redundancy (usually three to five [text missing or illegible when filed] position), resulting in a final sequence identified as SEQ [text missing or illegible when filed]NT Seq." refers to the total number of nucleotides in the contig sequence identified as SEQ ID NO:X." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." (seventh column) and the "3' NT of Clone Seq." (eighth column) of SEQ ID NO:X. In the ninth column, the nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, in column ten, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5" NT of First AA of Signal Pep." In the eleventh column, the translated amino acid sequence, beginning with the methion-ine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be routinely translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

[0011] In the twelfth and thirteenth columns of Table 1A, the first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." In the fourteenth column, the predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion". The amino acid position of SEQ ID NO:Y of the last amino acid encoded by the open reading frame is identified in the fifteenth column as "Last AA of ORF".

[0012] SEQ ID NO:X (where X may be any of the polynucleotide sequences disclosed in the sequence listing) and the translated SEQ ID NO:Y (where Y may be any of the polypeptide sequences disclosed in the sequence listing) are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a

variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used, for example, to generate antibodies which bind specifically to proteins containing the polypeptides and the secreted proteins encoded by the cDNA clones identified in Table 1A and/or elsewhere herein

[0013] Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

[0014] Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X, and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1A. The nucleotide sequence of each deposited plasmid can readily be determined by sequencing the deposited plasmid in accordance with known methods

[0015] The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular plasmid can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

[0016] Also provided in Table 1A is the name of the vector which contains the cDNA plasmid. Each vector is routinely used in the art. The following additional information is provided for convenience.

[0017] Vectors Lambda Zap (U.S. Pat. Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Pat. Nos. 5,128,256 and 5,286,636), Zap Express (U.S. Pat. Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., *Nucleic Acids Res.* 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., *Nucleic Acids Res.* 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., *Strategies* 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, Calif., 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Phagemid pBS may be excised from the Lambda Zap and Uni-Zap XR vectors, and phagemid pBK may be excised from the Zap Express vector. Both phagemids may be transformed into *E. coli* strain XL-1 Blue, also available from Stratagene

[0018] Vectors pSport1, pCMVSport 1.0, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P.O. Box 6009, Gaithersburg, Md. 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into *E. coli* strain DH10B, also available from Life Technologies. See, for instance, Gruber, C. E., et al., *Focus* 15:59 (1993). Vector lafmid BA (Bento Soares,